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ABSTRACT 
 
 
Low image contrast limits the amount of information conveyed to the user. 

With the proliferation of digital imagery and computer interface between man-

and-machine, it is now viable to consider digitally enhancing the image before 

presenting it to the user, thus increasing the information throughput. This thesis 

explores the effect of the Contrast Limited Adaptive Histogram Equalization 

(CLAHE) process on night vision and thermal images. With better contrast, target 

detection and discrimination can be improved. The contrast enhancement by 

CLAHE is visually significant and details are easier to detect with the higher 

image contrast. Analyzing the image frequency response reveals increases in the 

higher spatial frequencies. As higher frequencies correspond to image edges, the 

power increase is viewed as corresponding to edge enhancement and hence, an 

increase in visible image details. This edge enhancement is perceived as 

improvement in image quality. This is further substantiated by a subjective 

testing, where a majority of human subjects agreed that CLAHE-enhanced 

images are more informative than the original night vision images. 
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I. INTRODUCTION  

A. BACKGROUND  

The element of surprise has long been touted as the main tactical 

advantage that would turn the tide of a battle. Throughout history, commanders 

have employed the darkness of night to gain surprise and to grasp the initiative 

from the hands of the enemy. Yet, while night operations have progressed from 

nocturnal maneuvers to the more recent firefights in Afghanistan and the “24-

hour battlefield”, difficulties associated with night operations still plague all 

commanders, particularly the ability to see clearly and the ability to differentiate 

friend-or-foe. The fact remains that darkness is "a double-edged weapon", and 

like terrain, "it favors the one who best uses it and hinders the one who does 

not." [Sasso, 1982]. 

Human beings are visual and non-nocturnal creatures by nature. Not 

gifted with any special or hyper-sensitive sensory organs, they rely more on their 

ability to see than on any of the other four senses (smell, hear, touch and taste) 

to understand and manipulate their surroundings. The cone and rod 

photoreceptors in the human eye are responsible for generating these sought-for 

visionary senses. The rods are more numerous and more sensitive than cones in 

low levels of illumination (more than one thousand times). They basically 

contribute our limited night or scotopic vision. However, the rods are not sensitive 

to color like the cones, i.e. they only generate monochrome images. Hence, 

objects that appear brightly colored in daylight, when seen under moonlight 

appear as colorless forms, because only the rods are stimulated. 

    In the absence of artificial light sources, the main source of natural 

illumination at night comes from the moon and to a lesser degree, the stars 

(estimated at one-tenth of a quarter moon). The amount of luminance ranges 

from 0.1 lux (full moon) to 0.0001 lux (overcast night) [Sampson, 1996]. 

Depending on the reflectivity of the objects, the eventual irradiance on the human 

eye may not be high enough to even stimulate the rods.  
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However, if we explore beyond the visible light spectrum (400 -700 nm), 

the Infra-Red (IR) spectrum offers possibilities for exploitation as reflected in 

Figures 1 and 2. Both the night luminance and the foliage reflectivity are higher in 

the Near Infra-Red (NIR) band, i.e. there is more light energy in this wavelength 

band.  

 
 

Figure 1: Natural night sky spectral irradiance, showing a higher 
irradiance in the NIR band [From Korry, 2003]. 
 

 

Figure 2: Foliage reflectivity: foliage is a better reflector in the IR 
band [From Korry, 2003]. 
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Hence, if we were able to “sense” IR or near-IR radiation (which the 

human photoreceptors are unable to do naturally), our night vision capability 

would be immediately improved, given the higher luminance available.       

 

B. NIGHT VISION  

There are two basic methods to improve night vision. The first is to 

increase the amount of visible light reaching the eye, as with artificial lighting 

such as a flashlight or by converting the “otherwise-invisible” radiation to visible 

radiation. The second is through light amplification, i.e. by increasing the 

normally imperceptible radiation energy to a level detectable by the human eyes. 

These methods to achieve night imagery are employed by the Image Intensifier 

(II) and the Thermal Imager (TI).    

 
1. Image Intensifier 
As the name implies, Image Intensifiers (II) are designed to boost very low 

intensity optical images to the point where they become perceivable to the 

human eye. They also act as wavelength “down-converters”, that is they convert 

near-IR radiation into visible radiation. II devices are commonly known as Night 

Vision Device (NVD) or Night Vision Goggles (NVG), depending on the mode of 

usage.  

 
Figure 3: A Night Vision Device with the light amplifying 
microchannel plate [From Korry, 2003]. 
 



4 

A typical II system consists of three main components: the photocathode, 

the micro-channel plate (MCP) and the phosphor screen, as shown in Figure 3.  

Reflected light from the scene or object enters the device and is focused onto the 

photocathode by an optical lens system. Photons striking the photocathode 

surface release photo-electrons. The flux of photo-electrons generated is 

proportional to the flux of incident light photons and the responsivity of the 

photocathode. In the first-generation of NVDs, the energy of the photo-electron is 

increased by acceleration with an externally applied electric field. Second-

generation devices make use of the MCP to achieve energy gain through 

electron multiplication. The actual number of photo-electrons is multiplied by 

accelerating the electrons through the MCP where an “avalanche” of secondary 

electrons is produced as a result of collisions between the electrons and the 

MCP wall. On emerging from the MCP, the electrons strike a phosphor screen 

which emits visible light, hence creating a visible image to the human eye. The 

most commonly-used phosphor is KA(P20) as it emits a greenish light at 560 nm, 

matching the peak sensitivity of the human eye. Furthermore, the P20 has fast 

decay time and high conversion efficiency, which is ideal for night vision purpose 

[Ji, 2002].     

The newer generation (Gen III) of NVDs uses a Gallium Arsenide (GaAs) 

photocathode which is sensitive to light beyond 800 nm and where the night sky 

illuminance levels are also higher (Figure 1). The MCP used in the third-

generation NVDs is also much smaller in pitch, thus giving better spatial 

resolution. As a result, Gen III NVDs can deliver a three-fold improvement in 

visual acuity and detection distances over the earlier generations. The light 

amplification achievable could be 30,000 times or more [LCEO, 2003].   
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2. Thermal Imager 
All material objects with temperatures above absolute zero Kelvins radiate 

infrared energy. A Thermal Imager (TI) detects this radiation (including reflected 

infrared energy) and converts this energy into a visible presentation. The 

commonest class of TI systems is the Forward-Looking Infrared system (FLIR). A 

system operating in the 8- to 14-µm region is usually referred to as an LWIR 

(long-wavelength infrared) FLIR, and one operating in the 3- to 5-µm as a MWIR 

(medium-wavelength infrared) FLIR. These are the two transmission windows 

where atmospheric attenuation of infrared radiation is minimal.    

 Most IR detectors operate using quantum mechanical interaction between 

incident photons and detector material. Photoconductive detectors absorb 

photons to elevate electrons from the valence band to the conduction band of the 

material, changing the conductivity of the detector. Photovoltaic detectors absorb 

photons to create electron hole pairs across a p-n junction which produces a 

small current. Such devices can be manufactured as part of an array that 

includes a capacitor that stores a charge proportional to the incident radiation. 

The charged array can then be read or scanned to produce the corresponding 

image. 

 As the TI senses temperature difference or contrast (sensitivity is 

frequently defined in terms of Minimum Resolvable Temperature Difference), 

detectors with small band-gap energies must be cooled to minimize thermally 

generated carriers and inherent detector noise.  

 The bolometer is a thermal detector that absorbs thermal energy over all 

wavelengths and changes its resistance accordingly. The change in resistance 

will produce a change in electric current which can be monitored. The radiation to 

the bolometer is usually modulated to improve sensitivity and uniformity [Holst, 

2003]. 

 

 



6 

C. CONTRAST SENSITIVITY 

The difference in radiation intensity levels (both emitted and reflected) 

from a scene creates the information contained within an image. An object of 

interest can be identified by its contrast against its immediate surroundings, 

which defines the object’s boundaries and edges. Contrast is defined as the 

difference in luminance or radiation intensity levels between regions or pixels.  

The larger the contrast, the easier an object can be detected from the 

scene. This can be illustrated by Figure 4, a Contrast Sensitivity Function (CSF) 

test image produced by Campbell and Robson in 1968.  

 

 
 
Figure 4: Contrast Sensitivity Function test chart by Campbell-
Robson [From McCourt, 2003]. 

 

In Figure 4 above, spatial frequency increases from left to right (the bars 

become thinner and thinner) and contrast decreases from bottom to top 

(difference in gray level between the bars and background decreases). From a 

fixed viewing distance, note the contrast values where the bars are just barely 

visible over the range of spatial frequencies. Trace these out to form an inverted 

U-shaped curve and this will represent your contrast sensitivity function. The 
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region below the U-shaped curve is the visible stimuli region, where objects of 

such combination of spatial frequency and contrast will be detectable by the eye. 

The CSF of a typical adult human is shown in Figure 5 for reference. The 

influence of contrast on visible stimulus and object detection is evident.   

 

 
Figure 5:  CSF of adult human. Contrast sensitivity is defined as the 
inverse of contrast threshold, which is the minimum contrast level to 
see the grating in the test image [From McCourt, 2001]. 
 

1. II Imagery 
Figure 6 is a typical II image obtained by a NVD or NVG. As discussed in 

the previous section, the low luminance, coupled with low reflectivity from the 

ground and foliage, generates a low-contrast image with limited dynamic contrast 

range. Detector noise and clutter from the background degrades the image 

further. Figure 6 also shows a lack of details and contrast in the ground before 

the treeline, which are essential for situational awareness and navigation. 

However, the upper portion of the image has better contrast due to illumination 

by the night sky (from moon and stars). In this more illuminated region, the 

foliage can be differentiated, as the objects would be within the CSF for 

detection.  
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Figure 6:  A NVD image [From Naval Research Laboratory (NRL)].  

 

 
Figure 7:  A TI image [From NRL].  
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2. TI Imagery 
Figure 7 is a FLIR or TI image of the same scene as Figure 6. The 

temperature difference between the regions (due to different cooling rates of the 

earth or soil) generates sufficient contrast to see the layout of the ground before 

the treeline. The warm air and the low emissivity of the trees also creates the 

sharp contrast cues of the treeline against the sky (the treeline appears darker). 

However, for areas of homogeneity in temperature or emissivity (such as the 

foliage of individual trees), there is a lack of contrast or surface information, as 

evident by the “hollow appearance” of the foliage. Note that the IIs do not have 

this problem, as they detect the reflected radiation from the surface of the 

objects. Hence, the information contained in the II and TI images is 

complementary since the sensors operate in different bands of the 

electromagnetic spectrum. This leads to the impetus for image or sensor fusion 

to improve image quality and content [Scrofani, 1997]. 

 

3. Comparison of TI and II Imagery 
In a military context, the object of interest tends to be either man-made or 

alive. Such objects will have a temperature above zero Kelvin, due to body heat 

or some other energy generating process. Without solar heating, the air and the 

earth cool down during the night. Hence, all these objects of interest will contrast 

easily against the background and stand out in a TI, unless there is deliberate 

action to reduce the temperature contrast (such as camouflaging or shielding). In 

comparison, II depends greatly on ambient light (artificial or natural) for visibility, 

as it amplifies reflected incoming light. Therefore, in a totally dark room, the II will 

not be able to generate any image at all, whilst the TI is still able to “see”, 

provided that there are temperature gradients present. The TI also has better 

ability to see through smoke, rain and snow, as the longer wavelength IR 

radiation is able to propagate in the presence of such atmospheric particles with 

minimal attenuation, unlike shorter visible and near-IR radiation which would be 

scattered. As a result, the detection range for TI tends to be greater than II.  
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As II intensifies and amplifies incoming light, there is a possibility of 

“overloading” the II detector by a bright or high luminance source, which could 

temporarily “black-out” the sensor, similar to human vision when stepping out 

from a dark room into bright sunlight. The II is designed to “see” at night where 

the luminance level is low (0.1 lux or lower). Hence, a source with an intensity 

level a couple of orders of magnitude higher is sufficient to overload the II 

baseline sensitivity (a handheld flashlight is capable of producing 100 lux or 

more). Although the MCP amplifier generally has a non-linear response which 

reduces gain response at high irradiance, it is still insufficient to isolate bright 

sources and avoid such saturation. Figure 8 is a representation of this “over-

exposure” pitfall of the II by a light source.      

 

 
Figure 8:  An II image degraded by over-exposure [From NRL]. 
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Figure 9:  A TI image of the same scene as Figure 8, displaying 
better contrast and details level than the II image [From NRL]. 

 

Given the tactical advantages of TI and the shortcomings of II, there is 

therefore a general preference for TI as the night vision sensor of choice for 

detection. However, II still has a slight advantage in identification, because of its 

ability to sense surface differences from their reflectivity. The relatively lower cost 

and compactness of II systems make them attractive for field deployment, as 

unlike the TI systems, they do not require a cooling system for better sensitivity.  

In general, due to limited reflectivity characteristics from the scene, the 

quality of II images is hampered by lower contrast. It is difficult to discriminate 

objects from the background and clutter. From the previous section, increasing 

the contrast increases the visible stimulus and the probability of detection, as 

demonstrated by the Contrast Sensitivity Function (CSF) in Figure 5. Therefore, 

the usability of II system for detection will be enhanced if the contrast of the II 

images can be improved or the dynamic range expanded, without altering the 

spatial content of the original image.      



12 

D. OBJECTIVE  

Image enhancement techniques to improve visual quality have been 

popularized with the proliferation of digital imagery and computers. Techniques 

range from noise filtering, edge enhancement, color balance and contrast 

enhancement, in both frequency and spatial domains. Even in word processor 

software such as Microsoft Word, there are features or tool options to manipulate 

contrast and brightness levels of images.  

Computer-aided operation is also becoming a necessity, even in the 

military. Advanced systems and arms modernization programs often involve the 

integration of a computer or a computer processing interface to reduce the 

combat loading on the soldier or improve system reaction time. One prime 

example is the Land Warrior program [FAS website, 2003], where 

communications, sensors, and materials are integrated into a complete soldier 

system. At the heart of this soldier system, is a computer module or subsystem 

which integrates all the information and sensors together before presenting to the 

soldier via a helmet mounted display. The electro-optical sensors include thermal 

weapon sight, image intensifier, video camera (visible) and laser range-finder. 

Electro-optical sensors are also generally transitioning from direct view to remote 

display, which provides a possibility for enhancement.      

Taking the two developments in stride, it is therefore feasible to digitally 

enhance the night vision images with a computer algorithm before presenting it to 

the user, particularly a military one. Images acquired from the night vision device 

can be easily digitized by coupling the sensor output screen to a scanning array 

or an Analog-to-Digital converter. Next, the digital image can undergo a contrast 

enhancement algorithm, such as the Contrast-Limited Adaptive Histogram 

Equalization (CLAHE) to improve its visible scene content, while maintaining the 

spatial relation of the original image, before displaying the final improved image 

to the human user.  

II systems and images would benefit most from such a contrast 

enhancement because of their inherent low contrast limitation. The II system 
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would be given a new life and a new “light” per se, when the quality of the II 

images can be improved significantly by the proposed algorithm. Furthermore, no 

major modification is required on the II system since the enhancement is done by 

a software algorithm.     

This thesis explores the effect of such an image enhancement algorithm 

on the night vision image. Chapter II briefly reviews the fundamentals of digital 

image processing and the CLAHE process, while Chapter III analyses the 

enhancement results obtained with the CLAHE process. Finally, Chapter IV 

presents the conclusions and recommendations for further research.  
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II. DIGITAL IMAGE PROCESSING 

A. DIGITAL IMAGE 

A digital image is essentially a two-dimensional array of light-intensity 

levels, which can be denoted by f(x,y), where the value or amplitude of f at 

spatial coordinates (x,y) gives the intensity of the image at the point. The 

intensity is a measure of the relative “brightness” of each point. The brightness 

level is represented by a series of discrete intensity shades from darkest to 

brightest, for a monochrome (single color) digital image. These discrete intensity 

shades are usually referred to as the “gray levels”, with black representing the 

darkest level and white, the brightest level. These levels will be encoded in terms 

of binary bits in the digital domain, and the most commonly used encoding 

scheme is the 8-bit display with 256 levels of brightness or intensity, starting from 

level 0 (black) to 255 (white). The digital image can therefore be conveniently 

represented and manipulated as an N (number of rows) x M (number of columns) 

matrix, with each element containing a value between 0 and 255 (for an 8-bit 

monochrome image), i.e. 

 

f (0,0 ) f (1,0 ) . . f (0,M 1)
f (1,0 ) f (1,1) . . f (1,M 1)

f ( x,y ) . . . . .
. . . . .

f (N 1,0 ) f (N 1,1) . . f (N 1,M 1)

 
 
 
 
 
 
  

−
−

=

− − − −

, where 0 ≤ f(x,y) ≤ 255.  

 

Different colors are created by mixing different proportions of the 3 primary 

colors: red, green and blue, i.e. RGB for short. Hence, a color image is 

represented by an N x M x 3 three-dimensional matrix, with each layer 

representing the gray-level distribution of one primary color in the image.         

Each point in the image denoted by the (x,y) coordinates is referred to as 

a pixel. The pixel is the smallest cell of information in the image. It contains a 
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value of the intensity level corresponding to the detected irradiance. Therefore, 

the pixel size defines the resolution and acuity of the image seen. Each individual 

detector in the sensor array and each dot on the LCD (liquid crystal display) 

screen contributes to generate one pixel of the image. There is actually a 

physical separation distance between pixels due to finite manufacturing 

tolerance. However, these separations are not detectable, as the human eye is 

unable to resolve such small details at normal viewing distance (refer to 

Rayleigh’s criterion for resolution of diffraction-limited images [Pedrotti, 1993]). 

For simplicity, digital images are represented by an array of square pixels.  

The relation between pixels constitutes the information contained in an 

image. A pixel at coordinates (x,y) has eight immediate neighbors which are a 

unit distance away: 

 

(x-1, y-1) (x-1, y) (x-1, y+1) 

(x, y-1) (x,y) (x, y+1) 

(x+1, y-1) (x+1, y), (x+1, y+1) 

 
Figure 10:  Neighbors of a Pixel. Note the direction of the x and y 
coordinates used.  
 
Pixels can be connected to form boundaries of objects or components of 

regions in an image when the gray levels of adjacent pixels satisfy a specified 

criterion of similarity (equal or within a small difference). The difference in the 

gray levels of two adjacent pixels gives the contrast needed to differentiate 

between regions or objects. This difference has to be of a certain magnitude in 

order for the human eye to identify it as a boundary.  
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B. IMAGE PROCESSING METHODS 

There are two main methods to process an image as defined by the 

domain in which the image is processed, namely the spatial domain or the 

frequency domain. The spatial domain refers to the image plane itself, and 

approaches in this category are based on direct manipulation of pixels in an 

image. Frequency domain processing techniques are based on modifying the 

spatial frequency spectrum of the image as obtained by the Fourier transform. 

Enhancement techniques based on various combinations of methods from these 

two categories are not unusual and the same enhancement technique can also 

be implemented in both domains, yielding identical results [Gonzalez and Woods, 

1993]. 

 

1. Spatial Domain Methods 
The spatial domain refers to the aggregate of pixels composing an image, 

and spatial domain methods are procedures that operate directly on these pixels. 

Image processing functions in the spatial domain may be expressed as:  

   g(x,y) = T[ f(x,y) ],           (1) 

where f(x,y) is the input image data, g(x,y) is the processed image data, 

and T is an operator on f, defined over some neighborhood of (x,y). In addition, T 

can also operate on a set of input images, for example performing the pixel-by-

pixel sum and averaging a number of images for noise reduction.             

The principal approach to defining a neighborhood about (x,y) is to use a 

square or rectangular mask centered at (x,y). The center of this mask or window 

is moved from pixel to pixel, and the operator applied at each location (x,y) to 

yield the corresponding g for that location. The resultant g(x,y) is stored 

separately, instead of changing pixel values in place, to avoid a “snow-balling” 

effect of the altered gray levels.  
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2. Frequency Domain Methods 
The foundation of frequency domain techniques is the convolution 

theorem. The processed image, g(x,y), is formed by the convolution of an image 

f(x,y) and a linear, position-invariant operation h(x,y), that is  

     g(x,y) = h(x,y)∗  f(x,y).           (2)  

By the convolution theorem, the following frequency domain relation holds: 

   G(u,v) = H(u,v) F(u,v),           (3) 

where G, H, and F are the Fourier transforms of g, h and f respectively.  

H(u,v) is called the transfer function of the process. In a typical image 

enhancement application, f(x,y) is given and the goal, after computing F(u,v), is 

to select a H(u,v) so that the desired image g(x,y) exhibits some highlighted 

feature of f(x,y), i.e. 

   g(x,y) = F-1 [ H(u,v) F(u,v) ].          (4) 

For instance, edges in f(x,y) can be accentuated by using a function H(u,v) 

that emphasizes the high-frequency components of F(u,v). 

 

3. Global and Local Methods 
Image processing methods that involve using a single transformation 

function for the whole image are classified as global methods or algorithms. The 

lowpass/highpass filters and histogram transformation are examples of global 

enhancement methods. The main advantage of global methods is that they are 

computationally inexpensive and simple to implement. However, global methods 

may attenuate or miss local information while working on the overall 

characteristic of the image.   

The transformation function of a local processing method is dependent on 

the location and the neighborhood of the pixel looked at, i.e. 

   g(x,y) = T[x,y, f(x,y)].           (5)     
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These methods are therefore “adaptive” to the local information within the 

image. Adaptive histogram equalization is an example of such a local processing 

method and is effective in enhancing details in local areas of the image.  

However, pixels of the same gray level in the original image may be mapped to 

different gray levels in the output image, due to the various “localized” mapping 

or transformation functions, which could artificially alter the appearance of the 

original image. Abrupt changes or boundaries may also result in the image, 

because each transformation is done locally and independently.  

  

C. FILTERS 

Filtering refers to the selective processing of an image to remove 

unwanted aspects of the image or to transform only certain portions of the image. 

Lowpass filters attenuate or eliminate high-frequency components in the Fourier 

domain, while allowing low frequencies to pass through untouched. As the high 

frequency components characterize edges and other sharp details in an image, 

the net effect of lowpass filtering is image blurring [Gonzalez and Woods, 1993]. 

Hence, lowpass filters are also known as smoothing filters and are commonly 

used for noise reduction.  

Similarly, highpass filters attenuate low-frequency components. Because 

these components are responsible for the slowly varying characteristics of an 

image, such as overall contrast and average intensity, the net result of highpass 

filtering is a reduction of these features and a corresponding apparent 

sharpening of edges and other sharp details. Highpass filters are therefore 

known also as sharpening filters. 

   

1. Lowpass Filtering  
As indicated earlier, edges and other sharp transitions (such as noise) in 

the gray levels of an image contribute significantly to the high-frequency content 

of its Fourier transform. Hence, blurring or smoothing is achieved in the 

frequency domain by attenuating a specified range of high-frequency 

components in the transform of a given image.  
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A 2-D ideal lowpass filter is one whose transfer function in equation (4) 

satisfies the relation: 

   0

0

1    if D(u,v)  D
H(u,v )

0    if D(u,v) > D
≤

= 


,          (6) 

where D0 is a specified non-negative quantity and D(u,v) is the distance 

from point (u,v) to the origin of the frequency plane, i.e.  

   D(u,v) = (u2 + v2 )1/2.           (7)  

The point of transition between H(u,v) = 1 and H(u,v) = 0, D0, is called the 

cutoff frequency. One way to establish this cutoff frequency is to define the 

percent of signal power to be contained within or passed by the filter. D0 is then 

equivalent to the radius of a circle with origin at the center of a 2-dimensional 

frequency plot. For an ideal filter, this transition is an impulse step, i.e. 

frequencies equal to or less than D0 are passed with no attenuation, while 

frequencies higher than D0 are completely attenuated. However, this sharp cutoff 

frequency cannot be realized with electronic components.  

The Butterworth lowpass filter was formulated to address this practical 

limitation, as it does not have a sharp discontinuity between passed and filtered 

frequencies. The Butterworth transfer function (of order n) is defined as follows 

[Gonzalez and Woods, 1993]: 

   2n
0

1H(u,v )
1 [ D(u,v ) / D ]

=
+

.           (8)  

Lowpass smoothing fliters can also be implemented in the spatial domain. 

Figure 11 shows a general 3x3 linear mask with arbitrary coefficients (weights) z. 

Denoting the gray levels of pixels under the mask at any location by z1, z2 ... z9, 

the response of the mask is:  

   R = w1z1 + w2z2 + … + w9z9.         (9) 
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W1 W2 W3 

W4 W5 W6 

W7 W8 W9 

 
Figure 11:  A 3x3 spatial mask with arbitrary coefficients [From 
Gonzalez and Woods, 1993]. 
  

All the coefficients of the mask are set to a value of 1 for simple smoothing 

processing. The response from the mask would be the sum of gray levels for the 

nine pixels under the mask, as per equation (8). This response R is then scaled 

down by dividing by the total number of pixels (nine in this case) to keep within 

the original gray levels range. Therefore, the response or result would simply be 

the average of all the pixels in the area of the mask. Larger masks (e.g. 5x5 and 

7x7) follow the same concept and will blur the image further with larger 

neighborhood averaging. For the border pixels of the image, there will be a 

shortage of neighborhood pixels for the mask. One option is to pad the shortage 

with pixels of the same values as the center pixel or a reference pixel. Another 

option is to process one layer less of pixels, i.e. no filtering on the border pixels.        

Lowpass filters are generally used for blurring and for noise reduction in 

preprocessing steps, such as the removal of small details from an image prior to 

object extraction, and bridging of small gaps in lines or curves. Figure 12 

illustrates the effect of a lowpass filter.  
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Figure 12:  Lowpass filtering with a 3x3 spatial filter or 98% percent 
power D0 locus. The top image is the original image and the bottom the 
processed image, where the image details have been blurred.  
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2. Highpass Filtering 
Image sharpening can be achieved in the frequency domain by a highpass 

filtering process as edges and other abrupt changes in gray levels are associated 

with high-frequency components. Such filtering attenuates the low-frequency 

components without disturbing high-frequency information in the Fourier 

transform. Highpass fliters are therefore known also as sharpening fliters. 

The highpass filtering process can be implemented in both the frequency 

and spatial domains. For highpass filtering in the frequency domain, the transfer 

function is essentially the inverse of that obtained for lowpass filtering,  

  0

0

0   if D(u,v)  D
H(u,v )

1    if D(u,v) > D
≤

= 


.         (10) 

The transfer function of the Butterworth highpass filter of order n and with 

cutoff frequency locus at distance D0 from the origin is defined by the relation 

  2n
0

1H(u,v )
1 [ D / D(u,v )]

=
+

.        (11) 

The principal objective of sharpening is to highlight fine detail in an image 

or to enhance detail that has been blurred, either in error or as a natural effect of 

a particular method of image acquisition. Uses of image sharpening vary and 

include applications ranging from electronic printing to medical imaging to 

industrial inspection and autonomous object detection.  

A basic 3x3 highpass spatial mask is shown in Figure 13. The center 

coefficient is positive while the rest of the mask contains negative coefficients. 

The sum of the coefficients is then equal to zero. Thus, the output of the mask is 

zero or very small when the mask is over an area of constant or slowly varying 

gray level. As with highpass frequency filtering, the zero-frequency term is 

attenuated or eliminated. This will reduce the average gray-level value in the 

image to zero, which in turn reduces the global contrast of the image. The 

expected result from such a highpass mask is therefore characterized by 

highlighted edges over a dark background. Reducing the average value of an 
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image to zero also implies that the image may have negative gray levels due to 

the negative coefficients in the mask. Next, the results have to be adjusted or 

clipped and scaled down (by dividing by the number of pixels in the mask) to 

keep the output within the original (non-negative) gray level range. 

 

-1 -1 -1 

-1 8 -1 

-1 -1 -1 

 
Figure 13:  A basic highpass spatial filter [From Gonzalez and 
Woods, 1993]. 
 
A highpass filtered image can be computed as the difference between the 

original image and a lowpass filtered version of the same image, as the highpass 

filter is the complement of the lowpass, i.e.,   

  Highpass = Original – Lowpass.        (12) 

Multiplying the original image by an amplification factor, denoted by A, 

yields the definition of a high-boost or high-frequency-emphasis filter, i.e., 

  Highboost = (A)(Original) – Lowpass, 

 = (A-1)(Original) + Original – Lowpass, 

 = (A-1)(Original) + Highpass.       (13) 

When A >1, part of the original is added back to the highpass result, which 

restores partially the low-frequency components lost in the highpass filtering 

operation. The result is that the high-boost image looks more like the original 

image, with a relative degree of edge enhancement that depends on the value of 

A. Therefore, the center weight of the high-boost filter can be represented by 

   W5 = 9A-1 with A ≥ 1.        (14) 

When A = 1, the basic highpass filter is obtained as in Figure 13 

[Gonzalez and Woods, 1993].   
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Figure 14:  High-boost filtering with A = 1.8. The bottom image is the 
processed image. The brightness of the image is lowered and the 
features of the ships sharpened. 
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D. HISTOGRAM 
An image histogram is a plot of the distribution of intensities or gray levels 

in an image. The histogram of a digital image with gray levels in the range [0, L-

1] can be represented by the discrete function  

    k
k

np( r )
n

= ,         (15) 

where rk is the kth gray level, nk is the number of pixels in the image with 

that gray level, n is the total number of pixels in the mage, and k = 0, 1, 2, … L-1. 

 

 

 
Figure 15:  Histograms of four basic image types [After Gonzalez 
and Woods, 1993]. 
 

Dark Image Bright Image 

High-contrast Image Low-contrast Image 

(d)(c) 

(b)(a) 
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The image histogram gives an estimate of the probability of occurrence of 

a gray level rk. A plot of this function for all values of k also provides a global 

description of the appearance of an image. For example, Figure 15 shows the 

histograms of four basic types of images. The histogram in Figure 15(a) shows 

that the gray levels are concentrated toward the dark end of the gray scale 

range. Thus, this histogram corresponds to an image with overall dark 

characteristics. Figure 15(b) is the opposite, with a bright image. The histogram 

shown in Figure 15(c) has a narrow shape, which indicates little dynamic range 

and thus corresponds to an image having low contrast, while Figure 15(d) shows 

a histogram with significant spread, corresponding to an image with high 

contrast.  

Although the histogram does not provide any specific information about 

the image content, the shape and distribution of the histogram provide a venue 

for contrast enhancement. However, the histogram is a global representation of 

the intensity characteristics within an image and therefore, histogram 

transformation affects the whole image, i.e. globally. This differs from the 

localized methods such as the spatial mask and filters, which depend only on the 

pixel looked at and its neighbors.    

 

E. HISTOGRAM EQUALIZATION 
The histogram of an image represents the relative frequency of 

occurrence of gray levels within an image. It also represents the probability of 

such an occurrence. With a narrow distribution of gray levels (refer to Figure 

15(c)), the contrast in the image will be low and the dynamic range limited. 

Hence, a good gray level assignment scheme would be to expand the intensity 

range to fill the whole dynamic range available. The probability of occurrence of 

all gray levels should be equal or uniform. In histogram equalization, the goal is 

to obtain a uniform histogram distribution for the output image, so that an optimal 

overall contrast is perceived.   
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An outline of the histogram equalization process is as follows [Gonzalez 

and Woods, 1993]: 

Let the variable r represent the gray levels in the image to be enhanced or 

equalized. The pixel values can be normalized to form continuous quantities in 

the interval [0, 1], with r = 0 representing black and r = 1 representing white.  

For any r in the interval [0, 1], the transformation is of the form: 

    s = T(r),          (16) 

which produces a gray level s for every level of r in the original image. It is 

assumed that the transformation function given in equation (15) satisfies the 

conditions: (a) T(r) is single-valued and monotonically increasing in the interval 

0≤ r ≤ 1; and (b) 0 ≤ T(r) ≤ 1 for 0 ≤ r ≤ 1. Condition (a) preserves the order from 

black to white in the gray scale, whereas condition (b) guarantees a mapping that 

is consistent with the allowed range of gray levels.  

The inverse transformation from s back to r is then denoted 

   1r T (s )−= , 0 ≤ s ≤ 1,        (17) 

where the assumption is that 1T (s )−  also satisfies conditions (a) and (b) 

with respect to the variable s.  

The gray levels in an image may be viewed as random quantities in the 

interval [0, 1]. If they are continuous variables, both the original and transformed 

gray levels can be characterized by their probability density function pr(r) and 

ps(s) respectively, where the subscripts on p are used to indicate that pr and ps 

are different functions.  

The probability density function of the transformed gray levels can 

therefore be expressed by:    

   
1

s r
r T ( s )

drp (s ) p ( r )
ds −=

 =   
.        (18) 
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Consider the transformation function  

  s = T(r) = 
r

r
0

p (w )dw∫ , 0 ≤ r ≤ 1,       (19) 

where w is a dummy variable of integration. Equation (19) is actually the 

cumulative distribution function (CDF) of r. Conditions (a) and (b) presented 

earlier are satisfied by this transformation function, because the CDF increases 

monotonically from 0 to 1 as a function of r.  

From equation (19), the derivative of s with respect to r is 

   r
ds p ( r )
dr

= .          (20) 

Substituting equation (20) into equation (18) yields 

  
1

s r
r r T ( s )

1p (s ) p ( r )
p ( r ) −=

 
=  
 

= 1,  0 ≤ s ≤ 1,      (21) 

which gives a uniform density in the interval of the transformed variable s. 

This result is independent of the inverse transformation function. Thus, using the 

cumulative distribution function of r as the transformation function produces an 

image with uniform density gray levels and with better contrast distribution.    

For discrete formulation, the probabilities are replaced by:    

   k
k

np( r )
n

=  0 ≤ rk ≤ 1 and k = 0, 1 … L-1,        (22) 

and equation (19) will be given by the relation  

   
k k

j
k k r j

j 0 j 0

n
s T( r ) p ( r )

n= =

= = =∑ ∑ .       (23) 

A MATLAB implementation for the histogram equalization is available in 

Appendix A.  
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Figure 16:  Result of histogram equalization. The bottom image is 
the processed output. 
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Figure 17:  Image histograms before and after equalization. 

 

Figure 16 and 17 show the histogram equalization results and 

corresponding histograms. The improvement over the original image is quite 

evident, as the treeline and foliages are now much more clearly defined.  Looking 

at the histogram plots, the gray levels of the equalized image are spread out, 
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resulting in an increase in the dynamic range of gray levels and hence overall, 

contrast of the image.    

Histogram equalization significantly improves the visual appearance of the 

image. Similar enhancement results could have been achieved by using a 

contrast stretching approach, but the main advantage of histogram equalization 

over manual contrast stretching or manipulation techniques is that the former is 

fully automatic, without the need to select any setting or to adapt to the original 

histogram distribution of the image.   

 

F. ADAPTIVE HISTOGRAM EQUALIZATION 
In low contrast images, the features of interest may occupy only a 

relatively narrow range of gray scale, with the majority of gray levels occupied by 

“uninteresting areas” such as background and noise. These “uninteresting areas” 

may also generate large counts of pixels and hence, large peaks in the 

histogram. In this case, the global histogram equalization amplifies the image 

noise and increases visual graininess or patchiness. The global histogram 

equalization technique does not adapt to local contrast requirements, and minor 

contrast differences can be entirely missed when the number of pixels falling in a 

particular gray range is small. 

Adaptive Histogram Equalization (AHE) is a modified histogram 

equalization procedure that optimizes contrast enhancement based on local 

image data. The basic idea behind the scheme is to divide the image into a grid 

of rectangular contextual regions, and to apply a standard histogram equalization 

in each. The optimal number of contextual regions and the size of the regions 

depend on the type of input image, and the most commonly used region size is 

8x8 (pixels). In addition, a bi-linear interpolation scheme is used to avoid 

discontinuity issues at the region boundaries.  

Figure 18 illustrates the application of the interpolation scheme at the 

boundaries. Gray level assignment at the sample positions indicated by the white 

dot are derived from gray-value distributions in the surrounding contextual 
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regions. The points A, B, C, and D are the centers of the surrounding contextual 

regions; region-specific gray level mappings (gA(s), gB(s), gC(s) and gD(s)) are 

based on the histogram equalization of the pixels contained. Thus, assuming that 

the original pixel intensity at the sample point is s, its new gray value s’ is 

calculated by bilinear interpolation of the gray-level mappings that were 

calculated for each of the surrounding contextual regions: 

  s’ = (1-y)((1-x)gA(s) + xgB(s))+y((1-x)gC(s) + xgD(s)),      (24) 

where x and y are normalized distances with respect to the point A. This 

gray level interpolation is repeated over the entire image [Zuiderveld, 1994]. 

 
Figure 18:  Bilinear interpolation to eliminate region boundaries 
[From Zuiderveld, 1994]. 
 

AHE is able to overcome the limitations of the standard equalization 

method as discussed earlier, and achieves a better presentation of information 

present in the image. However, AHE is unable to distinguish between noise and 

features in the local contextual regions. Hence, background noise is amplified in 

“flat” or “featureless” regions of the image, which is a major drawback of the 

method. 
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G. CONTRAST LIMITED ADAPTIVE HISTOGRAM EQUALIZATION 
The noise problem associated with AHE can be reduced by limiting 

contrast enhancement specifically in homogeneous areas. These areas can be 

characterized by a high peak in the histogram associated with the contextual 

regions since many pixels fall inside the same gray level range. The Contrast 

Limited Adaptive Histogram Equalization (CLAHE) limits the slope associated 

with the gray level assignment scheme to prevent saturation, as illustrated in 

Figure 19. This process is accomplished by allowing only a maximum number of 

pixels in each of the bins associated with the local histograms. After “clipping” the 

histogram, the clipped pixels are equally redistributed over the whole histogram 

to keep the total histogram count identical. The CLAHE process is summarized in 

Table 1.  

 
Figure 19:  Principle of contrast limiting as used in CLAHE. (a) 
Histogram of a contextual region containing many background pixels. 
(b) Calculated cumulative histogram. (c) Clipped histogram with excess 
pixels redistributed throughout the histogram. (d) Cumulative clipped 
histogram with maximum slope set to the clip limit [From Zuiderveld, 
1994]. 
   

The clip limit is defined as a multiple of the average histogram contents 

and is actually a contrast factor. Setting a very high clip limit basically limits the 
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clipping and the process becomes a standard AHE technique. A clip or contrast 

factor of one prohibits any contrast enhancement, preserving the original image. 

Table 1.   Summary of CLAHE process [Mathworks, 2003]. 

1. Obtain all the inputs:  

•  Image 

•  Number of regions in row and column directions 

•  Number of bins for the histograms used in building image 
transform function (dynamic range) 

•  Clip limit for contrast limiting (normalized from 0 to 1) 

2. Pre-process the inputs: 

•  Determine real clip limit from the normalized value. 

•  If necessary, pad the image (to even size) before splitting 
into regions.  

3. Process each contextual region (tile) thus producing gray level 
mappings: 

•  Extract a single image region. 

•  Make a histogram for this region using the specified number 
of bins. 

•  Clip the histogram using clip limit. 

•  Create a mapping (transformation function) for this region. 

4. Interpolate gray level mappings in order to assemble final 
CLAHE image: 

•  Extract cluster of four neighboring mapping functions. 

•  Process image region partly overlapping each of the 
mapping tiles. 

•  Extract a single pixel, apply four mappings to that pixel, and 
interpolate between the results to obtain the output pixel. 

•  Repeat over entire image.  

 
The CLAHE process and command can be found in the Image Processing 

Toolbox (version 4.1) of MATLAB (version 6.5, release 13).  
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The main advantages of the CLAHE transform are its modest 

computational requirements, ease of use and excellent results on most images. 

Figure 20 compares the CLAHE result to that obtained by the standard histogram 

equalization method. The CLAHE image has less amplified noise and avoids the 

brightness saturation in the standard histogram equalization. Additional 

comparison samples are included in Appendix B. 

CLAHE does have its limitations. Since the method is aimed at optimizing 

contrast, there no direct 1-to-1 relationship between the gray values of the 

original image and the CLAHE processed result. Pixels of the same gray level in 

the original image may be mapped to different gray levels in the output image, 

because of the equalization process and bilinear interpolation. Consequently, 

CLAHE images are not suited for quantitative measurements that rely on 

physical meaning of image intensity [Zuiderveld, 1994].  
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Figure 20:  Comparison of images obtained from standard histogram 
equalization (top image) and from CLAHE (bottom image). The CLAHE 
image has less amplified noise and avoids saturation by the bright 
source in the image. Figure 8 contains the original image. 
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III. IMAGE ENHANCEMENT BY CLAHE 

A. SPATIAL FREQUENCY 

An image can be expressed in both the spatial and the frequency 

domains. The spatial domain is simply the two-dimensional image space which 

contains an array of pixels with intensity values representing the image. The 

image can be converted from the spatial domain to the frequency domain by 

Fourier transform.   

The periodicity with which the image intensity values change is commonly 

referred to as the spatial frequency. The image value at each position (fx, fy) in 

the frequency domain represents the amount by which the intensity values in the 

image vary over a specific distance related to the spatial frequencies fx and fy (for 

a 2-dimensional image). For a simple image that is totally grey in color, i.e. one 

single gray value in all pixels, there will be no frequency component in both the x- 

and y-directions, although there will still be a zero frequency component 

corresponding to the single gray value of the image, or in other words, the DC 

component of the image. If there is a change in intensity or gray level values, 

there will be some frequency components along the direction of change in the 

frequency domain. There will be only one frequency component if the change is 

purely sinusoidal.  

For example, suppose that there is the value 20 at the point that 

represents the frequency 0.1 (or 1 period every 10 pixels). This means that in the 

corresponding spatial domain, the intensity values vary from dark to light and 

back to dark over a distance of 10 pixels, and that the contrast between the 

lightest and darkest is 40 gray levels (2 times 20).  

The significance and correlation of the spatial frequency to the image is 

illustrated in Figure 21. A simple square-in-square image is generated with 

different degrees of contrast against the background as shown. For the first 

image, the background is set at a gray level of 100 and the square at 128, while 

for the second image; the background is set at 0 (black) and the square at the 
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same level of 220. The corresponding spatial frequency spectra are plotted and 

the increased higher frequency components due to the increased contrast 

between object and background are clearly shown.  

   

   
Figure 21: A simple image with its corresponding spatial frequency 
spectrum and the same image with a higher contrast between object 
and background, showing increased higher frequency components.   
 

Hence, a high spatial frequency therefore represents a large change in 

intensity or contrast over short image distances. This can be translated to edges 

and sharp details in the image.  The larger the amplitude or the frequency power, 

the greater the contrast change. The zero frequency in the frequency domain will 

correspond to the baseline intensity level in the image [HIPR, 2003].  
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To reinforce this point, the standard test image “Lenna” is used to illustrate 

the visual effect of boosting the higher spatial frequencies. The original gray-

scale “Lenna” image (512x512) is converted to the frequency domain and 

components beyond the 150th pixel (arbitrary chosen) away from the zero 

frequency are enhanced 250% in magnitude. The resulting image is shown on 

the right of Figure 22, which has sharper details (e.g. the lines of the hat). Hence, 

increasing the power of the higher frequency components enhances the edges 

and sharpens the details in the image, very much similar to a high-boost filter. 

The bottom pair of images in Figure 22 illustrates the effect of increasing the zero 

frequency component by 20% (the brightness of the image is increased).  

         

         
Figure 22: Effect of adjusting spatial frequency powers on the 
image. The top pair of images illustrates an increase in the power of 
the higher frequency components, while the bottom pair represents an 
increased power in the zero frequency component. 
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B. IMAGE QUALITY ASSESSMENT 

The aim of image processing is naturally concerned with producing better 

images. But the key question is how do we quantify or measure the term “better” 

in image quality assessment. There is no absolute measuring scale like the 

kilogram in weight or the meter in distance. The fact remains that the image is 

ultimately perceived by a pair of human eyes and interpreted by the human brain 

for whatever purpose the image is intended for. Hence, the assessment of image 

quality is always subjective. There have been attempts to introduce an objective 

assessment methodology of image quality, such as mean-square error, 

probability of detection and peak signal-to-noise ratio [Barret, 1990]. But the 

basic difficulty is that images can be used for a variety of functions or purposes 

(e.g. classification, detection and measurement). A “good” image for one purpose 

may not be suitable for another. Furthermore, the performance of the human 

visual system (including the human brain) is not consistent even for the same 

image, let alone among individuals. Experience, eye-sight, training, age, physical 

conditions and fatigue will all affect the final interpretation of the image.         

An image is always produced for a specific purpose or task, and the only 

meaningful measure of its quality is how well it fulfills that purpose. An objective 

approach to assessment of image quality must therefore start with a specification 

of the task and then determine quantitatively how well the task is performed or 

achieved [Barrett, 1990]. For example, in assessing the image quality for image 

compression, the mean-square error is a relevant and objective measure of the 

amount of distortion in the compressed image, as the smaller the error, the better 

the image. In the case of night vision images, their main purpose will be for 

detection of objects and providing information about the surrounding, when the 

human eyes are not sensitive enough under the low-illumination conditions. A 

quantitative measure for such a purpose would be the probability of detection or 

the time to detection. However, all the II and TI images used in this thesis are 

samples provided by the Naval Research Laboratory, as suitable imagers were 

not available at the time of the study. Some of the images contain identifiable 

objects, such as ships and fence, while others are just general outdoor scenes of 
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foliage. There is unfortunately no “hidden” object implanted in the scenes to 

measure quantitatively the quality of the image with respect to its purpose for 

detection.  

Another objective measure of night vision images could be the number of 

edges or the intensity of the edges in the image. With more enhanced edges, 

more details and more information can be perceived from the image. As 

discussed in the previous section, edges in the image correspond to high spatial 

frequencies. Hence, for the same image, if there is more power in the higher 

spatial frequencies, the edges will be enhanced and hence, more details will be 

detectable. This is similar in principle to the highpass filter in the frequency 

domain as described in Chapter II. In this respect, the quality of the image can 

therefore be judged to be better, as the enhanced edges would improve the 

information content of the image, and the increased power in the high spatial 

frequencies can be measured objectively.   

 

C. ANALYZSIS OF ENHANCEMENT RESULTS    

A CLAHE-processed night vision image is compared to its original 

unprocessed version in Figure 23. The CLAHE processed image appears to 

have “better clarity” as image edges and details have been enhanced by the 

CLAHE process. The profile of the foliage and the river bank are “easier” to 

identify. The single small tree in the center of the image is a good example of 

enhancement produced by CLAHE. Therefore, this edge enhancement would 

theoretically be accompanied by increased higher spatial frequency components 

in the frequency domain of the image. Our aim is to compare the frequency 

spectra of the original and the processed image for increased higher frequencies 

and to use this difference as an objective basis for judging improvement in image 

quality, instead of relying solely on subjective visual assessment.       
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Figure 23: Unprocessed (top) and CLAHE processed night vision 
images (bottom) for comparing the improvement in image contrast and 
details enhancement by CLAHE.   
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1. Spatial Frequency Spectrum  
The image is first converted from the spatial domain to the frequency 

domain by using the 2-dimensional discrete Fast Fourier Transform (FFT) in 

MATLAB. The image is “padded” (to 1024x1024) during the FFT process, i.e. 

adding zeros to the beginning and/or end of the time-domain sequence. This 

addition increases the frequency resolution of the FFT and does not affect the 

frequency spectrum of the image. As the image sizes are 480x640, padding the 

image to even dimensions of power 2 (210 = 1024) also reduces the FFT 

computation time. The Fourier transform is also shifted to center the zero 

frequency with respect to the image center. The frequency power spectrum is 

then plotted out using the “mesh” command in MATLAB. 

Figure 24 plots the frequency responses of the unprocessed and the 

corresponding CLAHE-processed image shown in Figure 23. Clearly, there is an 

increased amount of higher frequency components, as shown by the higher 

spikes and color-coded profiles contained in the pictures, i.e. there is more power 

in the higher spatial frequencies. This observation supports the fact that the 

edges have been enhanced. Notice that the zero frequency is centered at the 

location (512,512) as a result of the padding to 1024x1024.   

 

2. Spectrum Power Distribution 
Next, the cumulative power distribution with respect to the distance from 

the center zero frequency (in terms of number of pixel count) is plotted to further 

examine the frequency power distribution. This computation is accomplished by 

superimposing a square window over the frequency spectrum and summing the 

power contained within it. The center of the square will overlie the zero frequency 

center and the distance will be equivalent to half the length of the square window. 

A contour plot of the frequency spectrum was created with MATLAB to illustrate 

the expanding window for computing the total amount of power, as shown in 

Figure 25. The contour plots also provide a different viewing aspect for 

comparing the frequency spectra of the processed and unprocessed images.      
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Figure 24: Frequency spectrum plot of the unprocessed image and 
the CLAHE processed image, showing an increase in the power of 
higher frequency components. The maximum peak value is clipped at 
5x105 to focus on the power distribution beyond the zero frequency. 
.  
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Figure 25: Contour plots of the unprocessed image and the CLAHE 
processed image. The summation process to compute the power 
distribution is as illustrated on the top image.  
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Figure 26: Cumulative spectrum power distribution plots for six pairs 
of images, showing an overall increased in total spectrum power and a 
higher percentage of power in the higher frequencies.  
 

The cumulative spectrum power distributions of the original and processed 

images are plotted in Figure 25. A total of six image pairs were used to give an 

indicative trend of the distribution profile. Figure 25 shows that the total spectrum 

power has been increased by the CLAHE process, which can be translated here 

to increased brightness and contrast in the image. The rate of increase in the 

cumulative power in the second half of the curves, i.e. the higher frequencies, is 

also steeper for the CLAHE-processed images (the green dotted lines) than that 

of the original image, as illustrated by the gradient triangles in red. This 

difference implies that there is a higher percentage of power contained in the 

higher frequencies and indicates edge enhancement in the processed images.  
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Figure 27: Spectrum power distribution plot. The percentage of 
power contained in the higher frequencies is higher for the CLAHE-
processed image as shown by the green profile.  
 

Figure 27 shows that a higher percentage of power is contained in the 

higher frequencies (from the 100th pixel onwards for this image) in the CLAHE 

processed image than in the original unprocessed image. We also note that the 

percentage of power in the lower frequencies is lower for the processed image, 

which is not significant as the vital information, i.e. the edge content, is contained 

in the higher boosted frequencies.      

 In summary, the results presented in Figure 26 and 27 validate the 

observation that the CLAHE process has enhanced the image edges and details, 

as evident from the boosted higher spatial frequency components. The CLAHE-

enhanced images are therefore judged to be improved. 
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3. Histogram  
The histogram of the CLAHE-processed image is compared with its 

unprocessed version in Figure 27. The CLAHE processed image has a more 

evenly-distributed and wider spread of the gray levels, which translates to an 

image with better contrast as seen in the processed image in Figure 22. Since 

the amplitude of spatial frequency is dependent on the degree of contrast 

change, a larger contrast range in the histogram is therefore linked to increased 

spatial frequency components. 

 

 
Figure 28: Comparison of the histograms of the unprocessed and 
the CLAHE processed image. The images are from Figure 22. 
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D. SUBJECTIVE ASSESSMENT 

The eventual user of an image is still the human being. Theoretical figures 

of merit and engineering computations may be inadequate in predicting the 

human response. Hence, any image quality assessment should still be validated 

by human subjects for acceptance. 

 

1. Test Outline    
A subjective test was conducted to evaluate the image enhancement by 

CLAHE. Fifteen students from the Naval Postgraduate school, aged 28 to 38 

years old, were approached for the test. Fifteen is the recommended minimum 

number of test subjects by the International Telecommunication Union [ITU-R 

BT.500-11, 2002]. All subjects were voluntary and signed informed consents. 

Five of the subjects have no prior experience with night vision images or night 

vision devices, while the rest have experience with either the night vision goggle 

or the Thermal Imager.  

20 image pairs consisting of one CLAHE-processed and one unprocessed 

image of the same scene, were presented to the subjects on a Toshiba TECRA 

9100 laptop with 32-bit color and 1024x768 resolution setting. Brightness 

setting of the laptop LCD was at 50% and the test was conducted in a dimly-

lighted room. Subjects were shown two consecutive sequences of the same 

image pair and asked to indicate their preference as to which one of the two 

images conveyed the most information or details about the scene. “Most 

information” can be interpreted as what allows the subject to see more objects (if 

any) or provides a better situation awareness about the scene. A choice of 

“neutral” can be entered when the subject finds that both images are comparable 

or there is no significant difference between the two. The display timing of the 

image sequence was set as: three seconds (image 1), one second (blank 

screen), three seconds (image 2), followed by a two seconds pause before the 

same sequence was repeated for a second time.  Each test lasted approximately 

15 minutes.  
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The order of the processed and unprocessed image in the display 

sequence was randomized. Of the 20 image pairs, 5 were thermal images while 

the rest were NVD or II images. The thermal image pairs were interspersed 

among the II image pairs randomly. Due to the inherent high contrast present in 

these thermal images, it is expected that the enhancement by the CLAHE 

process would be insignificant and may even degrade the image quality. 

Therefore, the thermal images were inserted to break any monotony of choice 

that may arise in the experiment.     

 
2. Results  
Survey results are summarized in Table 2. 75% of the subjects found the 

CLAHE-processed night vision images to be more informative and a more 

meaningful representation of the scene, as compared to the original associated 

unprocessed images. This finding supports the proposition that the content of the 

image has been enhanced by the CLAHE process.  

The majority of the subjects did not find the CLAHE-processed thermal 

images to be better in providing information. About only 35% of the subjects 

found the processed thermal images to be more effective in providing 

information. This result could be due to the fact that the thermal images provided 

by NRL already have very good original contrast and as a result, the contrast 

enhancement by CLAHE is not significant. In some cases, the subjects 

commented that the image was “over-contrasted”, making the image “unnatural” 

and details difficult to identify. An example is shown in Figure 28. The image pair 

in Figure 28 is actually image pair number 10 in the subjective test, which 

received the lowest score.   

The CLAHE process enhancement is effective on the low-contrast night 

vision images as validated in the subjective testing. Thermal images generally 

have better contrast due to suppression of the background by AC coupling during 

the filtering process. But there would still be cases of low contrast thermal 

images, such as during dusk and dawn when the background temperature draws 

near the object temperature due to difference in thermal conductivity of object 
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and background. Therefore, the CLAHE process is still applicable to thermal 

imagery. 

 
Table 2.   Subjective Test Results 

  Image Preference (% of subjects) 
Image Pair Type Processed Unprocessed Neutral 

1 II 80.0  13.3 6.7 
2 II 73.3  26.7 - 
3 II 93.3  - 6.7 
4 II 66.7  26.7 6.7 
5 TI  26.7 66.7 6.7 
6 II 53.3  33.3 13.3 
7 II 60.0  20.0 20.0 
8 II 60.0  26.7 13.3 
9 II 86.7  13.3 - 

10 TI  20.0 66.7 13.3 
11 II 80.0  20.0 - 
12 TI  46.7 53.3 - 
13 II 80.0  13.3 6.7 
14 II 60.0  20.0 20.0 
15 TI  46.7 40.0 13.3 
16 II 80.0  13.3 6.7 
17 II 86.7  13.3 - 
18 TI  33.3 60.0 6.7 
19 II 80.0  6.7 13.3 
20 II 86.7  6.7 6.7 

Average preference for CLAHE-processed II image 75.1 
Average preference for CLAHE-processed TI image 34.7 
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Figure 29: Unprocessed and processed thermal image pair, 
illustrating the minimal improvement by the CLAHE process.   
 
3. Observations and Comments 



55 

a. No Objectivity in Images 
 Most of the images obtained from the Naval Research Laboratory 

are outdoor scenes with no particular object for detection. The general feedback 

from the subjects is that it is difficult to judge the information content of the image 

without a specific object to look out for, i.e. some specific detail that could be 

seen in only the enhanced image and not the original image. Images which have 

such characteristics would aid in making the test more objective. A few of the 

subjects entered a “neutral” choice, basically because they could see the same 

amount of details in both original and enhanced images as both sets of images 

contained the same information, even though the processed images appeared 

clearer. This explains the relative lower score for image pairs 6, 7, 8 and 14 (the 

images are available in Appendix B). 

 Hence, for future subjective testing, image pairs should be created 

(when the actual hardware is available) with one or more objects for detection. 

The objects could be obscured by low-light or camouflage to reduce their 

contrast and visibility in the original night vision images. These objects would be 

easier to see and detect after the CLAHE enhancement. A good example is      

the image pair from Figure 8 (original) and Figure 20 (CLAHE-processed). More 

ships can actually be seen with the enhancement, as agreed by 86.7% of the 

subjects.  

b. Scanning versus Staring 
Some of the subjects found the display time for the images to be 

too short for a proper assessment, which relates directly to the issue of scanning 

or staring assessment. Scanning is more concerned with wide-area surveillance 

where the assessment time is short and the images are displayed real-time; for 

staring, the image display is static. The commonality linking the two is the time to 

detection. Subjects would be likely to take less time to detect an object when the 

image has better contrast. Hence, the time to detection could be another 

objective measure of the image quality. However this measure can only be 

explored when there is object implanted in the image, as discussed in the 

previous section.    
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c. Experience Factor 
Five of the fifteen subjects did not have any prior experience of 

viewing night vision images or devices. Separating the two groups of subjects, 

the percentage for the CLAHE-processed image went up to 78% for those 

subjects with night vision experience as shown in Table 3, and the percentage is 

only 69% for subjects without any prior experience as per Table 4. The subjects 

from the group “without experience” indicated that they found enhanced noise 

and “graininess” in the CLAHE-processed image to be distracting, and preferred 

the original unprocessed image. The noise in question is actually inherited from 

the original image and hardware, something that experienced subjects have 

already accepted as a general characteristic of night vision images. Therefore, 

experience turns out to be a factor in the test results and should not be 

overlooked, as this group represents the new-users of night vision devices. It is 

also noted that there were more “neutral” choices from the experienced subjects, 

which could be explained by the lack of objectivity in the test images as 

discussed earlier.    

We recommend that the number of subjects be increased and 

include an equal number of experienced and inexperienced viewers for future 

studies. This would allow a more accurate analysis of the acceptance of the 

CLAHE enhancement and the influence of experience. The larger subject base 

would also better represent the population of users of night vision and thermal 

devices.  

d. Original Image Quality 
Image pair 4 received a relatively lower score for an II image. 

Examining the image pair reveals that the original image has reasonably good 

contrast due to a light source in the sky. Hence, the enhancement by CLAHE 

was not significant, which is similar to the thermal image pairs where the most 

common response was a preference for the original image. Therefore, the 

CLAHE enhancement may not be always necessary.    
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Table 3.   Subjective Test Results (with night vision experience) 

  Image Preference (% of subjects) 
Image Pair Type Processed Unprocessed Neutral 

1 II 90.0  10.0 - 
2 II 90.0  10.0 - 
3 II 90.0  - 10.0 
4 II 70.0  20.0 10.0 
5 TI  20.0 70.0 10.0 
6 II 50.0  30.0 20.0 
7 II 60.0  10.0 30.0 
8 II 50.0  30.0 20.0 
9 II 90.0  10.0 - 

10 TI  20.0 70.0 10.0 
11 II 90.0  10.0 - 
12 TI  40.0 60.0 - 
13 II 80.0  10.0 10.0 
14 II 60.0  10.0 30.0 
15 TI  50.0 40.0 10.0 
16 II 90.0  - 10.0 
17 II 90.0  10.0 - 
18 TI  20.0 70.0 10.0 
19 II 80.0  - 20.0 
20 II 90.0  - 10.0 

Average preference for CLAHE-processed II image 78.0 
Average preference for CLAHE-processed TI image 30.0 
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Table 4.   Subjective Test Results (without prior experience) 

  Image Preference (% of subjects) 
Image Pair Type Processed Unprocessed Neutral 

1 II 60.0  20.0 20.0 
2 II 40.0  60.0 - 
3 II 100.0  - - 
4 II 60.0  40.0 - 
5 TI  40.0 60.0 - 
6 II 60.0  40.0 - 
7 II 60.0  40.0 - 
8 II 80.0  20.0 - 
9 II 80.0  20.0 - 

10 TI  20.0 60.0 20.0 
11 II 60.0  40.0 - 
12 TI  60.0  - 
13 II 80.0  20.0 - 
14 II 60.0  40.0 - 
15 TI  40.0 40.0 20.0 
16 II 60.0  40.0 - 
17 II 80.0  20.0 - 
18 TI  60.0 40.0 - 
19 II 80.0  20.0 - 
20 II 80.0  20.0 - 

Average preference for CLAHE-processed II image 69.3 
Average preference for CLAHE-processed TI image 44.0 
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IV. CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY 

The CLAHE algorithm is a digital contrast enhancement technique that 

emphasizes local details in the image while limiting noise amplification. This 

process is achieved with local histogram equalization and clipping, followed by 

bilinear interpolation.      

CLAHE contrast enhancement has been found to be visually significant, 

and object detection is improved with the higher contrast in the images. 

Examining the frequency response of the enhanced image reveals increases in 

the higher spatial frequencies. As higher spatial frequencies correspond to edges 

in the image, the increase in power represents an enhancement of the edges and 

hence, an increase in visible image details. We also conducted a subjective 

testing where the majority of the human subjects indicated that the CLAHE-

enhanced images were more informative than the original images. 

Results indicated that the CLAHE process is effective in enhancing low-

contrast images. However, the improvement is limited for images with initially 

good contrast, such as the thermal images in this study. Nevertheless, TI can still 

suffer from low-contrast during the day, especially during dusk and dawn. 

Therefore, the CLAHE enhancement scheme is still applicable to both night 

vision devices (Image Intensifiers) and Thermal Imagers. This enhancement 

would be attractive for Image Intensifiers since they are cheaper and more 

compact, and their main handicap is their low-contrast imagery.     

The CLAHE process can be implemented in the form of a computer 

algorithm or a hardware electronic chip in the interface between the sensor and 

display. No modification is required on the sensor itself. The enhancement can 

also be real-time, as the CLAHE processing is not demanding. There is still a 

need for an on/off switch or option for the process as not all subjects found the 

enhancement beneficial at all times.     
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B. RECOMMENDATION FOR FURTHER RESEARCH 

1. Subjective Test with Object Detection 
A new set of matching night vision and thermal images containing specific 

objects should be created. The objects should be on the threshold of visibility in 

the unprocessed image and they should become detectable after the CLAHE 

enhancement. These image pairs can then be used in a larger or more extensive 

subjective test to determine the time to detection for these objects. Such test 

would help quantify the CLAHE improvement more objectively, and potentially 

justify its implementation cost. 

 
2. Image Fusion 
CLAHE-enhanced night vision images can be fused with their thermal 

counterparts (with or without enhancement) to assess any further improvement in 

image quality using the same frequency evaluation and subjective testing. One 

potential fusion algorithm to consider could be the nonlinear method proposed by 

Scrofani et. al. earlier (1997).   
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APPENDIX A: MATLAB ALGORITHMS 

This Appendix contains the following MATLAB source files: 

1. Histogram equalization (Test8_hist_equal.m). 

2. Frequency spectrum plot (Test13_power.m). 
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% Test8_hist_equal.m 
% Histogram equalization  
% =========================== 
% The input to the file has to be made manually in the m-file and run. 
% The output will consist of four histogram plots, the original image  
% and the processed image. 
% =========================== 
 
Aii = imread('21-I.tif');  % Input test image 21-I.tif 
 
Aorg = Aii; 
graylvl = 256;  % note the need to specify gray levels, typically it is 256 
lvl = graylvl - 1; 
 
disp('Generating histogram.....'); 
% ===== Generate histogram count ===== 
for k = 1:graylvl 
    n_count(k) = length(find(Aii == k-1)); 
end 
 
r = [0:1:lvl];           % graylevels from 0 to 255 
r_norm = r./lvl;         % normalized 
total = sum(n_count);    % total pixels count 
pdf = n_count./total;    % generate probability distribution 
 
s_cdf = pdf;             % generate cumulative density function 
for a = 1:length(r)-1 
    s_cdf(a+1) = s_cdf(a+1)+ s_cdf(a); 
end 
 
s_int = s_cdf.*lvl;          % rescale back to graylevel values 
s_lvl = uint8(s_int+1.5);    % convert to integer by removing decimals 
s_new = zeros(size(n_count));   % +1 to account for zero graylevel at 1st 
column 
 
disp('Equalising.....'); 
% ===== Combine count for same gray levels after transformation ===== 
for count = 1:1:lvl+1 
    s_new(s_lvl(count)) = s_new(s_lvl(count))+ n_count(count);  
end 
s_new = s_new./total;        % normalized new values 
 
% ===== Remap graylevels in image ===== 
for m = 1:480 
    for n = 1:640 
    Aii(m,n) = s_lvl(double(Aii(m,n))+1);     
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    end 
end 
 
disp('Transforming image.....'); 
 
% ===== Counter-check graylevel transformation for equalization ===== 
for k = 1:graylvl 
    n_check(k) = length(find(Aii == k-1)); 
end 
disp('....done.'); 
 
% ===== Plot histograms ===== 
Figure(1) 
subplot(2,2,1),bar(r,n_count),title('Original histogram'),axis tight; 
subplot(2,2,2),bar(r_norm,s_cdf),title('Cdf'),axis tight; 
subplot(2,2,3),bar(r_norm,s_new),title('Equalized histogram'),axis tight; 
subplot(2,2,4),bar(r,n_check), title('Equalized histogram 2'),axis tight;   
% the 3rd histogram is normalized and serve as a counter-check for the 4th 
histogram 
 
Figure(2) 
imshow(uint8(Aorg), 256); 
title('Original image') 
 
Figure(3) 
imshow(uint8(Aii),256); 
title('Resultant image') 
 
% ===== end ===== 
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% Test13_power.m 
% Plot the spectrum power distribution 
% =========================== 
% The input to the file has to be made manually in the m-file and run. 
% Input A is the original image while input B is the CLAHE processed image. 
% The first figure output will be the cumulative spectrum power plot. 
% The second figure output is the spectrum power distribution.   
% =========================== 
 
clear; 
Aii = imread('25-I.tif'); % input original image 
Bii = imread('25-Iah.tif'); % input CLAHE image 
 
Afft = fft2(Aii,1024,1024);          % fast fourier transform with padding 
Afft2 = fftshift(Afft);  % center zero frequency 
A2 = abs(Afft2);         % take magnitude of complex 
 
Bfft = fft2(Bii,1024,1024);          % fast fourier transform with padding 
Bfft2 = fftshift(Bfft);  % center zero frequency 
B2 = abs(Bfft2);         % take magnitude of complex 
 
% find center of spectrum 
[n1 x] = max(max(A2,[],1)); 
[m1 y] = max(max(A2,[],2)); 
 
A_total = sum(sum(A2)); 
[m n] = size(A2);  
dim_max = m - y; % find max dimensions of image 
A_array(1) = A2(x,y); 
A_arrayc(1) = A2(x,y); 
 
% expanding square and sum 
for dim = 1:dim_max 
    A_arrayc(dim+1) = 0; 
    for a = x-dim:x+dim 
        for b = y-dim:y+dim 
            A_arrayc(dim+1) = A_arrayc(dim+1)+A2(b,a); 
            A_array(dim+1) = A_arrayc(dim+1)- A_arrayc(dim); 
        end 
    end 
end 
 
% find center of spectrum for CLAHE image 
[n1b xb] = max(max(B2,[],1)); 
[m1b yb] = max(max(B2,[],2)); 
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B_total = sum(sum(B2)); 
[mb nb] = size(B2); 
dim_maxb = mb - yb; 
B_array(1) = B2(xb,yb); 
B_arrayc(1) = B2(xb,yb); 
 
for dimb = 1:dim_maxb 
    B_arrayc(dimb+1) = 0; 
    for a = xb-dimb:xb+dimb 
        for b = yb-dimb:yb+dimb 
            B_arrayc(dimb+1) = B_arrayc(dimb+1)+B2(b,a); 
            B_array(dimb+1) = B_arrayc(dimb+1)- B_arrayc(dimb); 
        end 
    end 
end 
 
% === Plot cumulative spectrum power distribution === 
figure; 
plot(0:511,A_arrayc./A_total,0:511,B_arrayc./B_total) 
 
% === Plot power distribution === 
figure; 
plot(0:511,A_array./A_total,0:511,B_array./B_total) 
% May have to zoom in the y aixs for a better view of the distribution 
 
% ==== end ===== 
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APPENDIX B: CLAHE ENHANCED IMAGES 

The following images are results obtained from using the Contrast Limited 

Adaptive Histogram Equalization (CLAHE) enhancement algorithm. The images 

on the left column are the original unprocessed night vision images, while the 

images on the right are the CLAHE processed images. These image pairs are 

used in the subjective testing to assess the improvement by the CLAHE method. 

The numbering of the image pair is the same as that used in the subjective test.    

 

 Original  CLAHE 

   
Image pair 1 

   
Image pair 2 
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 Original  CLAHE 

   
Image pair 3 

   
Image pair 4 

   
Image pair 5 

 
 
 
 
 



69 

 
 Original  CLAHE 

     
Image pair 6 

   

Image pair 7 

   

Image pair 8 
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Image pair 10 

   

Image pair 11 
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Image pair 12 

   

Image pair 13 

   

Image pair 14 
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 Original  CLAHE 

   

Image pair 15 

   

Image pair 16 

   
Image pair 17 
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 Original  CLAHE 

   
Image pair 18 

   

Image pair 19 

     

Image pair 20 

 



74 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THIS PAGE INTENTIONALLY LEFT BLANK 
 

 



75 

LIST OF REFERENCES 

1. Anderson, R. and et al.. Military Utility of Multispectral and Hyperspectral 
sensors. IRIA State of the Art Reports. Nov 1994. 

 
2. Barret, Harrison H. “Objective assessment of image quality: effects of 

quantum noise and object variability”. J. Opt. Soc. Am. A/Vol. 7, No. 7, 
1266-1278. Jul 1990. 

 
3. Bernas, Martin. “Image Quality Evaluation”. IEEE International Symposium 

on Video/Image Processing and Multimedia Communications. Jun 2002.   
 
4. Federation of American Scientists. “Land Warrior”. 

[http://www.fas.org/man/dod-101/sys/land/land-warrior.htm]. Oct 2003. 
 
5. Gonzalez, Rafael C. and Woods, Richard E.. Digital Image Processing. 

Addison-Wesley Publishing Company Inc.. 1993. 
 
6. Holst Gerald C.. Electro-Optical Imaging System Performance. Third 

edition. SPIE, 2003. 
 
7. Hypermedia Image Processing Reference, “HIPR Top page”. 

[http://www.dai.ed.ac.uk/HIPR2/hipr_top.htm]. Oct 2003. 
 
8. International Telecommunication Union Radio-communication 

Recommendation, Methodology for the subjective assessment of the 
quality of television pictures. ITU-R BT.500-11, 2002. 

 
9. Ji, Wei.  “EO Systems and Technology Review”. 

[http://www.physics.nus.edu.sg/~phyjiwei/DTS5709.htm]. Sep 2002. 
 
10. Korry Electronics Co.. “Introduction to NVIS”.  

[http://www.korry.com/nightshield/nvis_intro.htm]. Oct 2003. 
 
11. LCEO Night Vision Equipment. “The principles of Night Vision”. 

[http://www.squonk.net/users/lceo/NVworks.htm]. Oct 2003. 
 
12. Leszek, Wajnar. Image Analysis Application in Material Engineering. CRC 

Press. 1999. 
 
13. MathWorks Inc.. “Toolboxes: Image Processing Toolbox”. 

[http://www.mathworks.com/access/helpdesk/help/toolbox/images/images.
shtml]. Oct 2003. 

 



76 

14. McCourt, Mark E. “Spatial Frequency Analysis”. 
[http://www.psychology.psych.ndsu.nodak.edu/mccourt/website/htdocs/Ho
mePage/Psy460/Spatial%20frequency%20analysis/Spatial%20frequency
%20analysis.html]. Oct 2003. 

 
15. National Instruments Co.. ”Fourier Transforms and Frequency Analysis”. 

[http://www.ni.com/support/labview/toolkits/analysis/analy3.htm]. Oct 
2003.  

 
16. Pedrotti, Frank L.S.J. and Pedrotti, Leno S.. Introduction to Optics. 

Second edition. Prentice Hall. 1993. 
 
17. Sampson, Matthew T.. An Assessment of the Impact of Fused 

Monochrome and Fused Color Night Vision Displays on Reaction Time 
and Accuracy in Target Detection. Master’s Thesis, Naval Postgraduate 
School, Sep 1996. 

 
18. Sasso, Claude R., Major. “Soviet Night Operations in World War II”.  

Combat Studies Institute, U.S. Army Command and General Staff College, 
Fort Leavenworth. Leavenworth Paper No. 6. Dec 1982. 

 
19. Scrofani, James W. An Adaptive Method for the Enhanced Fusion of Low-

Light Visible and Uncooled Thermal Infared Imagery. Master’s Thesis, 
Naval Postgraduate School, Jun 1997. 

 
20. Seul, Michael and et al.. Practical Algorithms for Image Analysis. 

Cambridge University Press. 2000. 
 
21. Therrien, C.W. and et al. “An Adaptive Technique for the Enhanced 

Fusion of Low-Light Visible with Uncooled Thermal Infared Imagery”. IEEE 
Intimetional Conference on Image Processing. pp 405 – 408, Oct 1997. 

 
22. Xue, Z. and et. al.. “Fusion of Visual and IR Images for Concealed 

Weapon Detection”. v.2, pp. 1198-1205. 2002. 
 
23. Zuiderveld, Karel. “Contrast Limited Adaptive Histogram Equalization”. 

Graphics Gems IV, pp. 474-485. Academic Press. 1994. 
 

 



77 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Professor Monique P. Fargues 
ECE Department 
Naval Postgraduate School 
Monterey, California 
 

4. Professor Alfred W. Cooper 
Physics Department 
Naval Postgraduate School 
Monterey, California 
 

5. Professor Ronald Pieper 
Department of Electrical Engineering 
University of Texas 
Tyler, Texas 
 

6. Professor Yeo Tat Soon 
 Temasek Defence Systems Institute 

Singapore 
 
7. Mr Teo Chek Koon 
 Defence Science and Technology Agency 

Singapore 


